Saturday, November 17, 2007

SPEKTROSKOPI SERAPAN ATOM - SPEKROSKOPI MASSA - SPEKTOSKOPI RESONANSI MAGNETIK INTI

MAKALAH SPEKTROSKOPI

SPEKTROSKOPI SERAPAN ATOM

SPEKROSKOPI MASSA

SPEKTOSKOPI RESONANSI MAGNETIK INTI




Disusun oleh :

Chrisye Dewi Puspita

058114072

Fakultas Farmasi

Universitas Sanata Dharma

Yogyakarta

2007

SPEKTROSKOPI SERAPAN ATOM

Peristiwa serapan atom pertama kali diamati oleh Fraunhofer, ketika menelaah garis-garis hitam pada spectrum matahari. Sedanngkan yang memanfaatkan prinsip serapan atom pada bidang analisis adalah seorang Australia bernama Alan Walsh pada tahun 1955. Sebelumnya ahli kimia banyak tergantung pada cara-cara spektrofotometrik atau analisis spektrografik. Beberapa cara ini sulit dan memakan waktu, kemudian digantikan dengan spektroskopi serapan atom. Metode ini sangat tepat untuk analisis zat pada konsentrasi rendah.

Teknik ini mempunyai beberapa kelebihan dibandingkan dengan metode spektroskopi emisi konvensional. Pada metode konvensional, emisi tergantung pada sumber eksitasi. Bila eksitasi dilakukan secara termal, maka ia bergantung pada temperatur sumber. Selain itu eksitasi termal tidak selalu spesifik, dan eksitasi secara serentak pada berbagai spesies dalam suatu campuran dapat saja terjadi. Sedangkan dengan nyala, eksitasi unsure-unsur dengan tingkat eksitasi yang rendah dapat dimungkinkan. Tentu saja perbandingan banyaknya atom yang tereksitasi terhadap atom yang berada pada tingkat dasar harus cukup besar, karena metode serapan atom hanya tergantung pada perbandinganini dan tidak bergantung pada temperatur. Logam-logam yang membentuk campuran kompleks dapat dianalisis dan selain itu tidak selalu diperlukan sumber energi yang besar.

Prinsip AAS

Metode AAS berprinsip pada absorbsi cahaya oleh atom. Atom-atom menyerap cahaya tersebut pada panjang gelombang tertentu, tergantung pada sifat unsurnya. Dengan absorpsi energi, berarti memperoleh lebih banyak energi, suatu atom pada keadaan dasar dinaikan tingkat energinya ketingkat eksitasi. Keberhasilan analisis ini tergantung pada proses eksitasi dan memperoleh garis resonansi yang tepat.

Cara Kerja AAS

Setiap alat AAS terdiri atas tiga komponen berikut :

o Unit atomisasi

o Sumber radiasi

o Sistem pengukur fotometrik

Atomisasi dapat dilakukan dengan baik dengan nyala maupun dengan tungku. Untuk mengubah unsure metalik menjadi uap atau hasil disosiasi diperlukan energi panas. Temperatur harus benar-benar terkendali dengan sangat hati-hati agar proses atomisasinya sempurna. Biasanya temperatur dinaikkan secara bertahap, untuk menguapkan dan sekaligus mendisosiasikan senyawa yang dianalisis. Bila ditinjau dari sumber radiasi, haruslah bersifat sumber yang kontinyu. Di samping itu sistem dengan penguraian optis yang sempurna diperlukan untuk memperoleh sumber sinar dengan garis absorpsi yang semonokromator mungkin.

Seperangkat sumber yang dapat memberikan garis emisi yang tajam dari suatu unsure yang spesifik tertentu dikenal sebagai lampu pijar hallow cathode. Dengan pemberiaan tegangan pada arus tertentu, logam mulai memijar, dan atom-atom logam katodenya akan teruapkan dengan pemercikkan. Atom akan tereksitasi kemudian mengemisikan radiasi pada panjang gelombang tertentu.

Pemakaian Analitis AAS

Teknik AAS menjadi alat yang canggih dalam anlisis. Ini disebabkan diantaranya oleh kecepatan analisisnya, ketelitiannya sampai tingkat runut, tdak memerlukan pemisahan pendahuluan. Kelebihan kedua adalah kemungkinannya untuk menentukan konsentrasi semua unsure pada konsentrasi runut. Ketiga, sebelum pengukuran tidak selalu memerlukan pemisahan unsur yang ditentukan karena kemungkinan penentuan satu unsure dengan kehadiran unsure lain dapat dilakukan asalkan katoda berongga yang diperlukan tersedia. AAS dapat digunakan sampai 61 logam.

Sensitivitas dan batas deteksi merupakan 2 parameter yang sering digunakan dalam AAS. Sensitivitas didefinisikan sebagai konsentrasi suatu unsure dalam larutan air (μg/ ml) yang mengabsorpsi 1 % dari intensitas radiasi yang datang. Sedangkan batasan deteksi adalah konsentrasi suatu unsure dalam larutan yang memberikan sinyal setara dengtan 2 kali deviasi standar dari suatu seri pengukuran standar yang konsentrasinya mendekati blangko atau sinyal latar belakang.

SPEKTOSKOPI MASSA

Spektometer massa adalah suatu instrument yang dapat menyeleksi molekul-molekul gas bermuatan berdasarkan massa atau beratnya. Teknik ini tidak dapat dilakukan dengan spekstroskopi, akn tetapi nama spektroskopi dipilih disebabkan persamaan nya dengan pencatat fotografi dan spectrum garis optic. Umumnya spectrum massa diperoleh dengan mengubah senyawa suatu sample menjadi ion-ion yang bergerak cepat yang dipisahkan berdasarkan perbandingan massa terhadap muatan.

Proses ionisasi menghasilkan partikel-partikel bermuatan positif, dimana massa terdistribusi adalah spesifik terhadap senyawa induk. Selain untuk penentuan stuktur molekul, spektum massa dipakai untuk penentuan analisis kuantitatif.

Jika didapat data IR dan NMR yang cukup lengkap, maka MS ini dapat digunakan untuk konfirmasi dengan memperhatika bobot molekul dan kemungkinan rumus strukturnya.

Prinsip Spektroskopi Massa

Merupakan suatu instrument yang menghasilkan berkas ion dari suatu zat uji, memilah ion tersebut menjadi spektum yang sesuai denganperbandingan massa terhadap muatan dan merekam kelimpahan rewlatif tiap jenis ion yang ada. Umumnya hanya ion positif yang dipelajari karena ion negative yang dihasilkan dari sumber tumbukan umumnya sedikit.

Analisis Kualitatif

Spektroskopi massa memungkinkan kita menidentifikasi suatu senyawa yang tidak diketahui, dengan mengkalibrasi terhadap senyawa yang telah diketahui seperti uap merkuri atau perfloro kerosin.

Rumus molekul suatu senyawa dapat diyentukan puncak ion molekul sudah dikenal tetapi untuk hal-hal semacam ini diperlukan spektometri beresolusi tinggi. Aturan nitrogen dapat dimanfaatkan untuk membantu penentuan rumus ini. Lazimnya semua senyawa organic mempunyai berat molekul genap tidak mengandung nitrogen atau mengandung sejumlah atom nitrogen yang genap, sedang semua senyawa organic dengan berat molekul ganjil mengandung jumlah atom nitrogen ganjil. Aturan ini berlaku untuk senyawa-senyawa kovalen yang mengandung C, H, O, S, dan Halogen. Pola fragmen dipergunakan untuk mengidentifikasi senyawa, juga memungkinkan terdapat pengenalan gugus fungsi dentgan melihat puncak-puncak fragmentasi spesifik.

Hukum nitrogen menyatakan bahwa suatu molekul yang berat molekulnya merupakan bilangan genap maka molekul tersebut harus tidak mengandung nitrogen atau kalau mengandung nitrogen berjumlah genap, dan molekulnya berbilang ganjil mengandung nitrogen berjumlah ganjil.

Analisis Kuantitatif

Spectrometer massa dapat digunakan untuk analisis kuantitatif suatu campuran senyawa-senyawa yang dekat hubungannya. Analisis ini dapat dipergunakan untuk analisis campuran, baik senyawa organic ataupun anorganik yang bertekanan uap rendah. Karena pola fragmentasi senyawa campuran adalah aditif sifatnya, suatu senyawa campuran dapat dianalisis jika berada dalam kondisi yang sama. Persyaratan dasar analisisnya adalah setiap senyawa harus mempunyai paling tidak 1 puncak yang spesifik, konstribusi puncak harus aditif dan sensitive harus reproduksible serta adanya senyawa referens yang sesuai. Dengan spektometer massa beresolusi tinggi, senyawa polimer dengan berat molekul tinggi juga dapat dianalisis.

Spectrometer massa dapat digunakan untuk analisis runutan organic terutama dengan menggunakan sumber bunga api listrik, dan ia juga dapat digunakan menganalisis unsur-unsur runutan dalam paduan atau dalam super konduktor. Tipe bunga api lstrik mmempunyai sensitivitas tinggi dan dapat menentukan sampai tingkat ppb.

Kekurangan spectrometer massa bunga api listrik adalah ketidakberaturan dari sumber dan kurang reproduksibel, tetapi kekurangan ini dapat diatasi dengan memakai sistem deteksi fotografi. Analisis kuantitatif instrumen semacam ini didasarkan pada garis-garis fotografi dengan standat yang sesuai.

Kegunaan Spektroskopi Massa

o Untuk menentukan berat molekul dengan sangat teliti sampai 4 angka dibelakang desimal.

o Spektoskopi massa dapat digunakan untuk mengetahui rumus molekul tanpa melalui analisis unsure.

SPEKTOSKOPI NUKLEAR MAGNETIK RESONANCE

( NMR )

Spektroskopi NMR mengandung muatan listrik yang pejal dan rumit, dimana kita harus menentukan elemen dasar. Kita harus ingat bahwa kita berhubunagn dengan intense magnetic field ( lading magnet yang kuat ) yang dibutuhkan sangat besar, suplai tenaga dengan control yang teliti, dan ketelitian control frekuensi.

Di tahun 1924, Pauli menduga bahwa inti atom mempunyai sifat spin dan momen magnetic. Bila inti diletakan dalam medan magnet, tigkat-tinakat energinya akan terurai. Bloch dan Purcell menunjukkan bahwa inti mengabsorpsi radiasi elektromagnetik pada medan magnet yang lebih kuat karena tingkat energi menginduksi gaya magnet.

Setiap inti dikelilingi oleh awan elektro yang selalu bergerak . pada pengaruh medan magnet, electron ini dipaksa bersirkulasi sedemikian rupa dalam usaha melawan medan magnet ini. Akibatnya, ini seakan-akan mendapat efek perlindungan ( shielding ) terhadap medan magnet luar. Dengan kata lain kuat medan atau frekwensi medan magnet harus ditambah agar inti dapat mengalami resonansi. Caranya yaitu dengan mengatur medan magnet melalui aliran arus searah yang akan menghasilkan sapuan ( sweeping ) pada periode yang sempit. Banyaknya medan tiang ditambahkan dapat dikonversikan menjadi frekwensinya yang ekuivalen.

Nilai pergeeran kimia tergantung pada lingkungan kimia suatu proton, sedang lingkungan lingkungan kimia suatu proton tergantung pada besar kecilnya efek perlindungan oleh electron-elektron di lingkunagn proton tersebut. Pergeseran kimia diukur dalam besaran medan atau frekwensi. Perbandingan perubahan frekwensi yang diperlukan terhadap frekwnsi standar, dinyatakan dalam δ ppm. Standar yang digunakan adalah zat yang protonnya mempunyai perlindungan sebesar mungkin untuk memudahkan perbandingan.

Makin besar nilai δ, makin besar medan yang diperlukan untuk mengkompensasikannya agar terjadi resonansi. Harga δ dipengaruhi juga, diantaranya pelarut dan adanya jembatan hydrogen.

Pergeseran kimia digunakan untuk identifikasi gugus fungsi dan dapat digunakan sebagai penolong untuk menentukan letak suatu gugus dalam penentuan stuktur molekul.

· Spektrum H-NMR

Spektroskopi NMR proton merupakan sarana untuk menentukan stuktur senyawa organic dengan mengukur momen magnet atom hydrogen. Pada kebanyakan senyawa, atom hydrogen terikat pada gugus yang berlainan ( seperti –CH2-, -CH3-, -CHO, -NH2, -CHOH- ) dan spektum NMR proton merupakan rekaman sejumlah atom hydrogen yang berada dalam lingkungan yang berlainan. Spektum ini tidak dapat memberikan keterangan langsung mengenai sifat kerangka karbon molekul sehingga diperlukan spektum NMR C-13.

Larutan cuplikan dalam dalam pelarut lembam ditempatkan diantara kutub magnet yang kuat, dan proton mengalami geser kimia yang berlainan sesuai dengan lingkungan molekulnya di dalam molekul. Ini diukur dalam radar NMR, biasanya tetrametilsilan ( TMS ), yaitu senyawa lembam yang ditambahkan ke dalam larutan cuplikan tanpa ada kjemungkinan terjadinya reaksi kimia.

Adapun pelarut yang biasanya digunakan yaitu karbontetraklorida, deuterokloroform, deuteriumoksida, deuteroaseton, atau dimetilsulfoksida terdeuterasi.

Spektoskopi NMR dapat digui\nakan sebagai alat sidik jari.dan juga memberikan keterangan tentang jumlah setian tipe hydrogen. Ia juga memnerikan keterangan tentang sifat lingkungan dari setiap atom hydrogen tersebut.

Kegunaan yang besar dari resonansi magnet inti adalah karena tidak setiap proton dalam molekul beresonansi pada frekwensi yang identik sama. Ini disebabkan oleh kenyataan bahwa berbagai proton dalam molekul dikelilingielektron dan menunjukan sedikit perbedaan lingkungan elektronik dari 1 proton ke proton lainnya. Proton-proton dilindungi oleh electron-elektron disekelilingnya.

Spectrum NMR tidak hanya dapat membedakan beberapa banyak proton yang berbeda dalam molekul, teteapi ia juga mengungkapkan berapa banyak setiap tipe proton berbeda yang terkandung dalam molekulnya.

Langkah-langkah menginterpretasikan spekta NMR :

o jumlah sinyal, yang menerangkan tentang adanya beberapa macam perbedaan dari proton-proton yang terdapat dalam molekul

o kedudukan sinyal, yang menerangkan sesuatu tentang lingkungan elektronik dari setiap macam proton.

o Intensitas sinyal, yang menerangkan tentang berapa banyak proton dari setiap macxam proton yang ada.

o Pemecahan ( splinting ) dari sebuah sinyal menjadi beberapa puncak, yang menerangkan tentang lingkungan dari sebuah proton dengan lainnya.

Pada spectrum H-NMR dalam elusidasi struktur perlu diperhatikan :

o Luas di bawah puncak yang biasanya dinyatakan dengan intergrasi untuk melihat perbandingan jumlah proton pada masing-masing puncak.

o Terjadinya spin-spin splinting yang mengikuti segitiga pascal. Interaksi antara ikatan electron yang mempunyai kencerungan berpasangan spin dari electron dengan electron lainnya pada proton yang berdekatan.

o Geseran kimia (chemical shift), yaitu kedudukan proton dalam spektum tersebut.

· Spektum C-NMR

Sinyal dari atom C13 dalam alat NMR dapat dideteksi karena adanya sejumlah kecil atom karbon C-13 bersama-sama C-12. momen magnet yang dihasilkan oleh 13C lebih kecil, bila dibandingkan dengan momen magnet proton, berarti sinyalnya jauh lebih lemah.

Pelarut yang biasanya digunakan serupa dengan NMR proton, tetapi jangka resonansi C jauh lebih besar. Sehingga spektum NMR-13C jauh lebih teresolusi, umumnya setiap karbon dalam molekul dapat ditetapkan sinyalnya. Sama halnya seperti pada NMR proton, atom karbon penyulihannya berlainan akan menunjukkan geseran dalam jangka yang khas. Spectrum NMR ­13C pada hakikatnya merupakan pelengkap NMR proton.

Pada spectrum C-NMR dalam elusidasi struktur perlu diperhatikan :

o Luas di bawah puncak yang biasanya dinyatakan dengan intergrasi untuk melihat perbandingan jumlah carbon yang ekuivalen secara magnetic pada masing-masing puncak..

o Terjadinya spin-spin splinting yang mengikuti segitiga pascal. Interaksi antara ikatan electron yang mempunyai kencerungan berpasangan spin dari electron dengan electron lainnya pada proton yang diikat. Spin-spin slinting ini sering dihilangkan dengan cara di dekloping guna menghindari puncak-puncak yang tumpang tindih.

o Geseran kimia (chemical shift), yaitu kedudukan karbon dalam spektum tersebut. Ini juga menggambarkan letak dan kedudukan karbon dalam molekul.

DAFTAR PUSTAKA

Khopkar, S.M., Konsep Dasar Kimia Analitik, 275-286,389-400, UI Press, Jakarta

Sastrohamidjojo, Hardjono, 2001, spektroskopi, 415, Liberty, Yogyakarta

Silverstein, R.M., 1991, Penyelidikan Spektrometrik Senyawa Organik, Edisi 4,

diterjemahkan olehHartomo, 249-278, Erlangga, Jakarta

2 comments:

niina said...

tq informasinya... ^^

Anonymous said...

tramadol online where to buy tramadol online - tramadol hcl 50mg tab north